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Velocardiofacial syndrome, DiGeorge syndrome: the 

chromosome 22q11.2 deletion syndromes 

Lisa J Kobrynski, Kathleen E Sullivan

Velocardiofacial syndrome, DiGeorge syndrome, and some other clinical syndromes have in common a high 
frequency of hemizygous deletions of chromosome 22q11.2. This deletion syndrome is very common, aff ecting nearly 
one in 3000 children. Here, we focus on recent advances in cardiac assessment, speech, immunology, and 
pathophysiology of velocardiofacial syndrome. The complex medical care of patients needs a multidisciplinary 
approach, and every patient has his own unique clinical features that need a tailored approach. Patients with 
chromosome 22q11.2 deletion syndrome might have high level of functioning, but most often need interventions to 
improve the function of many organ systems.

Introduction
The nomenclature of the velocardiofacial syndrome, 
known as chromosome 22q11.2 deletion syndrome, has 
become confusing because many clinical syndromes are 
associated with a hemizygous deletion of chromosome 
22q11.2. 35–90% of patients clinically diagnosed with 
DiGeorge syndrome (cardiac anomalies, hypopara thy-
roidism, immunodefi ciency) and 80–100% with velo-
cardiofacial syndrome (pharyngeal dysfunction, cardiac 
anomaly, dysmorphic facies) have the hemizygous 
deletion.1–8 Additionally, some patients with CHARGE 
(coloboma, heart, atresia, retardation of growth, geni-
tourinary problems, ear abnormalities) and conotruncal 
anomaly face syndromes have the deletion. The reason 
for the confused nomenclature is the enormous 
phenotypic heterogeneity of this syndrome (table 1). 
Here, the term chromosome 22q11.2 deletion syndrome 
is used when referring to patients who have the deletion, 
and specifi c syndromic nomenclature is used when the 
resource data rely on clinical features.

Chromosome 22q11.2 deletion syndrome is seen in one 
in 3900 to one in 9700 children,9,10 and babies are born 
typically with a conotruncal cardiac anomaly and mild-
to-moderate immune defi ciency. Developmental delay, 
facial dysmorphia, palatal dysfunction, and feeding 
diffi  culties are also seen in most infants with the 
syndrome. Other clinical features (table 1) are noted less 
consistently. Despite the diversity of clinical features, 
nearly all patients will benefi t from coordinated multi-
disciplinary care. Here, we address some of the most 
common medical issues of velocardiofacial syndrome 
and review recent insights into its pathophysiology.

Epidemiology and genetics
Population-based estimates of the incidence and 
prevalence of chromosome 22q11.2 deletion syndrome 
are very diff erent. One of the most-widely cited estimates 
is that of Wilson and colleagues,11 who calculated a 
minimum prevalence rate of one in 4000 livebirths on the 
basis of the presence of the deletion in 5% of patients 
with congenital cardiac defects. Most estimates come 
from surveys of one institution or clinic. Goodship and 
colleagues10 examined 207 infants with congenital heart 

defects other than small ventricular septal defect, who 
were diagnosed between 1994 and 1995 in Newcastle, UK. 
Of the 170 infants who were ultimately examined, fi ve had 
the deletion. Two other children were diagnosed 4 years 
later, making the fi nal estimate of prevalence of one in 
3900 livebirths. Because not all patients have cardiac 
anomalies, this represents a minimum estimate.

Other centres have attempted to obtain population esti-
mates by measurement of the prevalence of the deletion in 
patients referred from many subspecialties, hospitals, or 
from birth defects registries. During 10 years, 24 children, 
who were born in the western Gotaland region of Sweden, 
had chromosome 22q11.2 deletion syndrome. The annual 
incidence was estimated as one in 7000 livebirths12 in the 
entire region, and one in 5900 livebirths for the city of 
Gothenburg. The overall prevalence of the deletion in 
children younger than 16 years of age was one in 7500. 
Devriendt and colleagues13 estimated birth prevalence in 
the Flemish region of Belgium on the basis of the number 
of positive tests for the chromosome 22q11.2 deletion in 
the central laboratory between 1992 and 1996. The average 
annual birth prevalence was one in 6395 livebirths. 
Through the birth defects registry in the Bouches-du-Rhone 
region in southern France, 12 patients with chromosome 
22q11.2 deletion syndrome were identifi ed by voluntary 
notifi cation from maternity units between 1989 and 1993. 
Patients before 1993 were identifi ed on the basis of clinical 
signs. The overall birth prevalence was one in 9700, but the 
birth prevalence in 1993, which was the fi rst year that 
fl uorescent in situ hybridisation (FISH) testing was 
available, was one in 4500 livebirths.9 
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These numbers are much higher than are those of 
Katzman and colleagues,14 who reported that 16 of 
297 (5%) patients referred for examination because of 
developmental delays were positive for the deletion. 
Screening of this population might not accurately indicate 
the general population or the population with the highest 
risk of having the deletion. The largest study of birth 
prevalence of chromosome 22q11.2 deletion syndrome 
used a registry of birth defects with active surveillance in 
the Atlanta metropolitan area, USA, and patients 
identifi ed through a screening programme of infants 
with congenital heart disease, and positive FISH tests 
done by a regional genetics laboratory.15 45 patients were 
identifi ed between 1994 and 1999. The overall prevalence 
was one in 5950 births. This is the only study that 

measured the prevalence in diff erent races, showing that 
it was similar in white, black, and Asian people (one 
in 6000 to one in 6500), but higher in Hispanic people 
(one in 3800).

All these studies probably underestimated the true 
incidence and prevalence of this disorder. The clinical 
phenotype is variable, and often patients without a 
congenital heart defect are diagnosed with a delay of 
several years. Almost all studies are dependent on clinical 
referral, and therefore patients with atypical or minimal 
phenotype might be missed. The deletion can be inherited 
in an autosomal dominant fashion; however, it is mostly a 
de novo mutation. Only a few studies have tested 
asymptomatic parents for the presence of the mutation; 
estimates that mutations are inherited from a parent are 
between 8% and 28%.16–18 Symptomatic parents frequently 
have a much milder phenotype than their off spring, with 
a lower frequency of congenital heart defects.11,19 This low 
frequency of heart defects might be related to poor 
survival of patients with cardiac anomalies before the 
availability of cardiac bypass machines in the middle of 
the 1980s. Genetic counselling is crucial in families with 
an aff ected parent because the recurrence risk is 50%, 
and off spring are often more severely aff ected. 

Diagnosis
Diagnosis is generally straightforward. Most patients with 
a clinical phenotype of velocardiofacial syndrome or 
DiGeorge syndrome have a hemizygous deletion of 
chromosome 22q11.2. The FISH method is accurate, but 
often takes 2–3 days and is expensive. Eff orts to develop a 
rapid PCR-based method are underway and might result 
in a commercial test soon.20–22 Diagnosis becomes more 
confused when a patient with classic features of 
velocardiofacial syndrome has no evidence of deletion by 
FISH. A point mutation, which has been described in a 
few patients,23 might be present in T-box 1 (TBX1). This 
mutation, or a deletion that is too small to be detected by 
stan dard FISH, or a non-chromosome 22 cause 
can all be associated with the same clinical manifest ations 
as in chromosome 22q11.2 deletion syndrome. Patients 
with features of velocardiofacial syndrome or DiGeorge 
syndrome who have deletions of chromo some 10, or 
mutations in chromodomain helicase DNA binding 
protein 7 (CHD7), and patients with prenatal exposure to 
isotretinoin or high glucose have been described.24–28 
Several patients with the clinical phenotype of 
velocardiofacial syndrome or DiGeorge syndrome have no 
known cause; this is an important issue because the risk of 
recurrence is not known.

A practical issue for clinicians is to decide which patients 
should be tested. Scarce prospective data exist on this topic; 
however, substantial eff orts have been made to defi ne the 
appropriate patient populations for testing (table 2). Of 
251 infants with conotruncal defects who were examined 
prospectively, 45 (18%) had the deletion. The frequency of 
the deletion varied with the nature of the cardiac defect.29 

Frequency of fi nding

Cardiac anomalies 49–83%

Tetralogy of Fallot 17–22%

Interrupted aortic arch 14–15%

Ventriculoseptal defect 13–14%

Truncus arteriosus 7–9%

Hypocalcaemia 17–60%

Growth hormone defi ciency 4%

Palatal anomalies 69–100%

Cleft palate 9–11%

Submucous cleft palate 5–16%

Velopharyngeal insuffi  ciency 27–92%

Bifi d uvula 5%

Renal anomalies 36–37%

Absent or dysplastic 17%

Obstruction 10%

Refl ux 4%

Ophthalmological abnormalities 7–70%

Tortuous retinal vessels 58%

Posterior embryotoxon (anterior segment 

dysgenesis)

69%

Neurological 8%

Cerebral atrophy 1%

Cerebellar hypoplasia 0·4%

Dental

Delayed eruption, enamel hypoplasia 2·5%

Skeletal abnormalities 17–19%

Cervical spine anomalies 40–50%

Vertebral anomalies 19%

Lower limb anomalies 15%

Speech delay 79–84%

Developmental delay in infancy 75%

Developmental delay in childhood 45%

Behaviour or psychiatric problems 9–50%

Attention defi cit hyperactivity disorder 25%

Schizophrenia 6–30%

Data were taken from references 16, 18, 112–114, 131–136.

Table 1: Clinical fi ndings in patients with chromosome 22q11.2 deletion 

syndrome
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The fi ndings in other centres vary widely, from 7% to 
50% of patients with conotruncal heart defects who were 
FISH positive.30–37 In infants with a congenital heart defect 
and no syndromic features, the frequency of chromosome 
22q11.2 deletion syndrome was reported to be very 
low (0–1%).35 The most diffi  cult population to identify 
consists of patients with chromosome 22q11.2 deletion 
syndrome and mild facial features, and developmental 
delay or speech delay. A study38 showed that physicians 
who have been trained to recognise facial features (fi gure 1) 
are more likely to identify patients correctly; however, most 
primary-care clinicians would have only one or two patients 
with chromosome 22q11.2 deletion syndrome under their 
care, suggesting that special outreach eff orts would need 
to be made to improve diagnosis.38

Pathophysiology
The disease mechanisms of chromosome 22q11.2 
deletion syndrome can be seen from two perspectives. 
One is the mechanism that underlies the deletion, and 
the other is the mechanism by which the deletion leads 
to the clinical phenotype. Since 1993, the deletion has 
been linked to low copy number repeats (LCRs).39 Four 
discrete blocks of LCRs are present in this region, and 
every block consists of several modules of repeats that 
have various lengths and orientations within a block.40 
These blocks have been named LCR A–D, with A being 
the most proximal (fi gure 2). These LCRs are seen only 
in primates and are, therefore, a recent evolutional 
acquisition. Support for the hypothesis that unequal 
meiotic exchange is the dominant mechanism of deletion 
comes from the identifi cation of asynchronous replication 
at the site of the deletion.41 Asynchronous replication has 
been postulated to enhance mispairing of LCRs. 

In the largest study so far that addressed the mechanism 
of the deletion, no intrachromosomal rearrangements 
were seen.42 Instead, the deletion was attributable to an 
aberrant meiotic exchange event.42 The characteristic 
deletion of chromosome 22q11.2 deletion syndrome is at 
least ten times more common than is the next most 

frequent human deletion syndrome. LCRs on chromosome 
22q11.2 are larger, more complex, and have higher 
homology than any other LCRs in the genome associated 
with human chromosomal deletion syndromes.

More than 35 genes are present within the commonly 
deleted region of chromosome 22q11.2. Chromosome 22 
was fully sequenced in 1999,43 and within 2 years the gene 
mainly responsible for the phenotypic features of 
velocardiofacial syndrome was identifi ed as TBX1. Some 
Cre–loxP deletions in mice mimicked the eff ect of the 
deletions in man, and showed that TBX1 is the dominant 
gene contributing to the cardiac phenotype.44 The 
development of a Tbx1-knockout mouse supported the 
importance of this gene in cardiac development, and 
tracked the aberrant cardiac development to impaired 
formation of the fourth branchial arch artery, a precursor 
to the right ventricle and outfl ow tract.45–47 Murine models 
have been instructive and revealed two surprising feat-
ures. Although the phenotype of early embryonic fourth 
branchial arch defect is fully penetrant, only some mice 
have cardiac lesions at birth. The ability to recover from 
the early branchial arch artery defect is very intriguing, 
and raises the question of whether an intervention in 
utero could be developed to counter the eff ects of the 
deletion, if identifi ed prenatally. Also the magnitude of 
the background modifi er eff ect was unexpected.48 Initially, 
the mice carrying the deletion did not have a substantial 
parathyroid or thymus phenotype. However, when the 
deletion was bred into other strains, the parathyroid and 
thymic phenotypes were more obvious. In human beings, 
few data support the existence of a background eff ect. 
Many patients from the USA and Europe are generally 
similar in terms of phenotypic manifestations.16,18 
However, patients from Chile and China have some 

Frequency of 

deletion

Any cardiac lesion 1%

Conotruncal cardiac anomaly 7–50%

Interrupted aortic arch 50–60%

Pulmonary atresia 33–45%

Aberrant subclavian 25%

Tetralogy of Fallot 11–17%

Velopharyngeal insuffi  ciency 64%

Velopharyngeal insuffi  ciency post-adenoidectomy 37%

Neonatal hypocalcaemia 74%

Schizophrenia 0–6%

Table 2: Frequency of the chromosome 22q11.2 deletion 

Figure 1: Facial dysmorphia in chromosome 22q11.2 deletion syndrome

In this patient, a slightly bulbous nose tip and hooded eyes are the primary 

features.
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important diff erences that might be ascertainment bias 
or true phenotypic diff erences related to distinct modifi er 
genes.49,50 Polymorphisms of the vascular endothelial 
growth factor might modify the phenotype in some 
circumstances.51

In mice, TBX1 is expressed in the pharyngeal 
mesenchyme and endodermal pouch. Pharyngeal pouches 
are the initial segmentation for structures of the face and 
upper thorax, and are temporary structures. The third 
(endodermal) pouch gives rise to the parathyroid and 
thymus. Haplosuffi  ciency for TBX1 leads to smaller 
precursor structures because of decreased proliferation of 
endoderm cells in the branchial arches.52,53 These arches 
subsequently lead to compromised development of facial 
structures, parathyroid, and thymus. A cascade of 
transcription factors regulates the development of the 
parathyroid and thymus, and TBX1 is an early requirement 

(fi gure 3). Additionally, TBX1 directly activates fi broblast 
growth factor 8 (FGF8), FGF10, myogenic factor 5 (MYF5), 
and myogenic diff erentiation 1 (MYOD1).52–58 FGF8 and 
FGF10 are thought to promote growth of surrounding cells 
and might also have a role in neural crest migration. MYF5 
and MYOD1 regulate development of the branchiomeric 
muscles.59 Aberrant development of these muscles might 
explain the swallowing and feeding diffi  culties that are 
common in infancy.

TBX1 is also expressed in the secondary heart fi eld, 
which gives rise to the cardiac outfl ow tract and the right 
ventricle, and the mesenchyme of the brain. Cells of the 
secondary heart fi eld are derived from the pharyngeal 
mesoderm. The primary heart fi eld gives rise to the 
primitive linear tube and is not dependent on TBX1. 
Several studies of cell-fate mapping revealed that TBX1 is 
expressed by a small set of cells in the anterior heart fi eld 
that become cardiomyocytes in the outfl ow tract 
(fi gure 4).52,53,60 These cells might mark a path for the 
subsequent migration of neural crest cells or they might 
be themselves essential to form the structures. The 
cascade of transcription factors is not as well described 
for the heart as for the parathyroid and thymus. 
Nevertheless, the pattern seems similar to that in the neck 
structures, with islet-1 (ISL1) regulating sonic hedgehog 
homolog (SHH). SHH in turn activates the expression of 
several forkhead box (FOX) family members: FOXA2 in 
the neck structures, and FOXA2, FOXC1, and FOXC2 in 
the secondary heart fi eld. The FOX family members bind 
to tissue-specifi c enhancers in the TBX1 gene, leading to 
two well described events. TBX1 drives the expression of 
FGF8 and FGF10, which are important for survival, 
proliferation, and migration of neural crest cells.61 TBX1 
also regulates the expression of paired-like homodomain 
transcription factor 2 (PITX2).62 This transcription factor 
is important for body closure, craniofacial development, 
and left–right asymmetry for heart development. 

Patients with chromosome 22q11.2 deletion syndrome 
have various malformations that do not map to branchial 
arch structures. Behavioural, cognitive, and psychiatric 
disturbances are very common, whereas distal skeletal, 
vertebral, and renal anomalies are seen in a few patients 
only. TBX1 is expressed in the developing brain mesoderm 
and in the sclerotome, which gives rise to various 
structures in the spinal column.63 Although the role of 
TBX1 in these sites is not well understood, its expression 
pattern gives a framework for understanding the 
non-branchial arch phenotypes.

Interest in the identifi cation of specifi c functions of 
TBX1 is related to the possibility of fi nding an intervention 
that might ameliorate the eff ects of haplosuffi  ciency for 
TBX1. Advances in the knowledge of the regulation of 
TBX1 have led to the possibility of controlling its expression 
through the retinoic-acid pathway. Fetal isotretinoin expo-
sure has long been known to cause a syndrome with 
remark able similarity to chromosome 22q11.2 deletion 
syndrome.64 Retinoic acid is a repressor of TBX1 expres-
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sion.65 Manipulation of this pathway might make its 
expression return to normal in haplosuffi  cient babies, if 
detected early enough. The identifi cation of modifi er 
genes, either within the deleted region or in background 
genes, is also of great interest because they might off er the 
basis for the development of meaningful interventions.51,66

Although data indicating that TBX1 has a role in the 
phenotype of chromosome 22q11.2 deletion syndrome 
are convincing, data showing that other genes within the 
deleted region are contributing to the phenotype exist. 
Haplosuffi  ciency for glycoprotein Ib β might contribute 
to the mild thrombocytopenia seen in patients, and 
haplosuffi  ciency for catechol-O-methyl transferase was 
implicated by some studies in the behavioural and 
psychiatric disturbances, and might be related to the 
mild increase in malignant disease.66–69

Management
The management of patients with chromosome 22q11.2 
deletion syndrome is highly dependent on age and 
phenotype (fi gure 5). Few prospective studies support a 
specifi c management style. Here, we describe common 
strategies for each organ system. Patients with the 
chromosome 22q11.2 deletion syndrome might present 
at any age, although most patients receive their diagnosis 
shortly after birth because of the presence of a cardiac 
anomaly. In newborn babies, a thorough physical and 
radiographic examination should seek medical problems 
that are likely to need immediate intervention, such as 
cardiac anomalies, hypocalcaemia, severe immuno-
defi ciency, or intestinal malrotation. Feeding diffi  culty 
can be very distressing for parents of babies with 
chromosome 22q11.2 deletion syndrome, but it is typically 
revealed after the patient is back at home.70 Development 
and speech during childhood need careful attention, 
whereas additional consideration to cognitive 
development and growth is needed during school years. 
Behavioural issues are likely to become more problematic 
with increasing age, and psychiatric disorders are seen in 
teenagers and adults (fi gure 5). 

The range of cardiovascular anomalies is wide, although 
conotruncal defects are the most frequent ones. Slight 
variations might dictate a diff erent surgical intervention. 
Two-dimensional and colour-Doppler echocardiography 
is essential to defi ne the anatomy; additionally, the 
thymus might be visualised in this way. Cardiac 
catheterisation is not always needed but can provide 
helpful information. Cardiac anomalies are seen in about 
75% of all patients with chromosome 22q11.2 deletion 
syndrome and are the major causes of death.16,18 

Surgical implications of chromosome 22q11.2 deletion 
syndrome are not fully known. Surgical risk is low in 
most patients.71 Many patients who need bypass surgery 
have minor residual cognitive issues. Whether this event 
is more frequent in those with chromosome 22q11.2 
deletion syndrome is not known. The two issues that 
aff ect clinical care before surgery are monitoring of 

serum calcium concentration and identifi cation of a 
serious immunodefi ciency. Low numbers of T cells are 
seen in 75–80% of infants with chromosome 22q11.2 
deletion syndrome.3,72–74 In most infants, a 
mild-to-moderate decrement of T-cell numbers occurs, 
and needs no specifi c attention during surgery or 
recovery from surgery. Less than 1% of patients with the 
deletion are thought to have no T cells.18 These patients 
are rare but need protection from infection and blood 
products. Blood products that contain lymphocytes can 
induce graft-versus-host disease in patients without 
T cells, which is almost always fatal, indicating that care 
should be taken. Care of patients without T cells is 
discussed below. 

Some patients with the chromosome 22q11.2 deletion 
syndrome might need cardiac surgery before obtaining 
defi nitive information regarding the status of their 
immune system. However, in these patients several 
strategies have been devised to reduce the risks. In many 
large centres in the USA, all blood products given to infants 
less than 1 year old are irradiated. Another strategy is to 
stratify risk in accord with the absolute lymphocyte count 
from a complete blood count. When the number of T cells 
is reduced, typically the absolute lymphocyte count is low. 
However, this strategy is not specifi c or sensitive. In the 
absence of prospective data, many physicians choose 
irradiation of blood products; however, this is a cumbersome 
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Figure 4: Cell-fate mapping 

The right ventricle and outfl ow tract are commonly populated by cells derived 

from the anterior heart fi eld. These regions are generally aff ected in the 

chromosome 22q11.2 deletion syndrome. The aorta itself is infrequently 

populated, but the ductus arteriosus is almost completely derived from cells of 

the anterior heart fi eld. RV=right ventricle. LV=left ventricle. RA=right atrium. 

LA=left atrium. PA=pulmonary artery.
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and expensive process that might lead to subtle changes in 
electrolytes within the blood product.

Individuals with chromosome 22q11.2 deletion syndrome 
frequently have a small hypoplastic thymus. In the original 
description by DiGeorge (1965), the main phenotypic 
features were congenital heart mal formations, hypopara-
thyroidism, and absent thymus.75 Since this original 
description, others have recognised the broad phenotypic 
range of this syndrome. Individuals with an absent thymus 
and a profound T-cell lymphopoenia have been described 
as having complete DiGeorge syndrome, whereas most 
patients have a milder form of immunodefi ciency and are 
described as having partial DiGeorge syndrome. The 
degree of immunodefi ciency does not correlate with other 
phenotypic features and must be assessed for every 
individual with a chromosome 22q11.2 deletion or 
suggestive clinical features.76 The size of the thymus 
correlates poorly with peripheral T-cell counts, suggesting 
that sources of extrathymic production of T cells might 
exist.77 Evidence exists for the presence of microscopic 
remnants of thymic epithelial cells.78 One retrospective 
study showed the presence of retropharyngeal thymus 
tissue in children with features of DiGeorge syndrome.79 

Several centres have measured thymic function in 
patients diagnosed with DiGeorge syndrome on the basis 
of clinical features or of detection of the 22q11.2 deletion. 
Although a large proportion of patients has an absent or 
hypoplastic thymus at the time of cardiac surgery, most 
seem to have only a minor immune defect.18,80–83 Most 
studies reported that patients show a reduction in the 
mean or median proportion and number of CD3+ T cells 
and CD4+ T helper cells compared with that of age-matched 
controls.72–74,80–82,84 The function of T cells, as measured by 
incorporation of H3-thymidine to quantify lymphocyte 
proliferation after stimulation with mitogens, is generally 
normal.72,73,80,82,83 One additional feature is the expanded 
proportion of B cells (CD19+), natural killer T cells 
(CD16+CD56+) in patients compared with controls.72,74,80,81 
Although the rate of decline of T-cell numbers in patients 

with chromosome 22q11.2 deletion syndrome is slower 
than is that of controls, the T-cell population is smaller 
than is that of healthy controls throughout childhood.72,73,81

Most studies show little eff ect of thymic hypoplasia on 
humoral immunity. Humoral immunity refers to the 
ability of B cells to produce antigen-specifi c antibodies. 

Serum IgG and IgM concentrations, and specifi c IgG 
against diphtheria and tetanus toxins are usually normal. 
The number of patients with IgA defi ciency seems to be 
higher than that in the general population, with estimates 
ranging from 2% to 30%.73,82,85–87 Selective IgA defi ciency 
is thought to arise in one in 700 individuals in the general 
population (0∙001%). Defects in cellular immunity might 
result in impaired antibody production to some antigens, 
such as measles or pneumococcal polysaccharides.85,88,89 
The mechanism underlying these defects might be 
reduction of the repertoire of T-cell receptor families.90 
The genetic diversity of T-cell receptors enables T cells to 
recognise many specifi c antigens. Another possible 
consequence of restricted T-cell receptor families is an 
increased frequency of infections, in addition to an 
increased frequency of autoimmune diseases. Some 
autoimmune diseases, such as juvenile rheumatoid 
arthritis, immune thrombocytopenia, and Raynaud’s 
phenomenon are more frequent in patients with 
chromosome 22q11.2 deletion syndrome than in the 
general population.18,85,91,92 The increased frequency of 
autoimmune diseases might be secondary to decreased 
numbers of T regulatory (CD4+CD25+) cells, which 
prevent organ-specifi c autoimmunity,93 or might be due 
to compensatory homoeostatic expansion of T cells.94 

Thymic aplasia with absence of peripheral T cells is a 
devastating disorder that should be addressed immediately. 
Infants with thymic aplasia are at risk of developing 
graft-versus-host disease after transfusion of non-irradiated 
blood products, and are at risk for opportunistic infections 
such as Pneumocystis jiroveci and Cytomegalovirus. 
Furthermore, infants with substantial thymic defects, and 
very low T-cell numbers or impaired T-cell function should 
not be treated with live viral vaccines because of the risk of 
developing disseminated disease from attenuated viral 
strains. By contrast, patients with mild thymic defects, 
whose CD4+ T-cell counts are greater than 400, can safely 
receive the measles–mumps–rubella live attenuated 
vaccine.95–97 Treatment for patients with absent T cells aims 
to restore T-cell function either through transplantation of 
mature T cells,98,99 or through transplantation of thymus 
tissue.100 Mini transplant protocols have been successfully 
used, and combined thymus–parathyroid transplantations 
have been done.101,102 This fi eld is rapidly advancing.

Speech, hearing, and vision issues are typically addressed 
during infancy. Although tortuous retinal vessels are seen 
in a third of patients and posterior embryotoxon is seen 
sporadically, vision is typically normal or close to normal in 
patients with chromosome 22q11.2 deletion syndrome.103 
Accommodation and convergence diffi  culties might 
indicate a generalised hypotonia, and refractive errors are 
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common but do not threaten vision.104 Hearing is important 
for the acquisition of language, and about 10% of patients 
with chromosome 22q11.2 deletion syndrome have 
sensorineural hearing loss, and 45% have conductive loss.105 
These diffi  culties are important to address; however, speech 
delay in velocardiofacial syndrome is diff erent from that in 
patients with congenital deafness. Hearing diffi  culties are a 
minor contributor to language delay in most patients. 

Speech diffi  culty is one of the most distressing aspects 
for most parents of children with chromosome 22q11.2 
deletion syndrome. Speech diffi  culties include defects in 
phonation, in language acquisition, and in 
comprehension.106 Phonation can be abnormal because of 
anatomical issues, including laryngeal webs, velopharyngeal 
insuffi  ciency, or vocal cord paralysis. Hoarseness and 
hypernasality partly respond to surgical intervention, but 
phonation remains abnormal in many patients.107,108 
Expressive language and speech skills are usually more 
delayed than are receptive skills, and expressive language 
skills are less evolved than expected on the basis of 
cognitive development. Social language skills are typically 
even more delayed. This pattern of skill weaknesses is 
almost unique to patients with chromosome 22q11.2 
deletion syndrome.109 Management of speech delay is very 
controversial. Experts of sign language think that the ability 
to communicate and develop the grammar of language is 
of paramount importance, and sign language enables the 
child to progress developmentally.109,110 An alternative 
approach is based on the belief that sign language delays 
language acquisition and uses intensive speech therapy.106 
There have been no direct comparisons of the two 
approaches, and parents seem to be satisfi ed with both 
sign language and intensive speech therapy. Ultimately 
most patients learn to speak and communicate eff ectively. 
The major obstacles for adults and teenagers are not 
speech or phonation, but the ability to reason and integrate 
information from verbal communication.

Organs of the abdominal cavity are infrequently aff ected 
in a way that needs medical intervention. Renal agenesis, 
duplicated kidneys, dysplastic kidneys, duplicated ureters, 
and other minor malformations are seen in about a third 
of patients with chromosome 22q11.2 deletion syn-
drome.18,111 These dysfunctions generally need no inter-
vention. Nephrocalcinosis is not a congenital anomaly of 
the kidney, but arises often as a consequence of excessive 
calcium replacement for hypocalcaemia. Genitalia, liver, 
and spleen are not typically aff ected in this syndrome; 
however, the gastrointestinal tract is a source of concern. 
Malrotation of the intestines is not a common feature, but 
it can be very serious if not diagnosed. Feeding and 
swallowing diffi  culties seem to arise from poor 
coordination of the pharyngeal muscles, tongue, and 
oesophageal muscles.70 Patients with cardiac defects might 
also have shortness of breath as a factor that leads to poor 
feeding, and breastfeeding is known to be diffi  cult for 
infants with palatal clefting. Thus, many dysfunctions can 
contribute to poor feeding. Because feeding is one of the 

most intimate parts of parenting, feeding diffi  culties of 
infants can be very frustrating for parents. Constipation is 
very common, as is gastroesophageal refl ux. The 
mechanisms underlying constipation and refl ux are not 
known, although hypotonia is a frequent cofactor. 

Speech delay profoundly aff ects the quality of life of the 
patient, but most aspects of development are somewhat 
aff ected. The mean full-scale intelligence quotient is 
about 70, indicating a range from normal-to-moderately 
disabled.112–115 Cognitive skills are not all aff ected in the 
same way, and most patients have reasonable skills 
related to comprehension and social rules. 
Visuo-perceptual abilities and planning tend to be the 
weakest cognitive skills.113,116 This pattern of non-verbal 
learning disability is not unique to chromosome 22q11.2 
deletion syndrome and is seen in other syndromes with 
developmental delay. Indeed, learning disability is 
occasionally the only manifestation of chromosome 
22q11.2 deletion syndrome.117 School-based interventions 
have been successfully developed for children with 
non-verbal learning disabilities. These interventions are 
thought to be suitable for children with chromosome 
22q11.2 deletion syndrome, although no studies have 
attempted to defi ne the best possible learning strategy. 

Nearly 50% of patients have microcephaly.118,119 The 
parietal lobe is typically aff ected and has important roles 
in memory retrieval, which is crucial for any learning 
process. Functional MRI studies have shown that the 
patterns of brain use during mathematical tasks are 
diff erent in patients with the chromosome 22q11.2 deletion 
syndrome compared with those in controls.118,120,121 Other 
anatomical fi ndings might elucidate the pathophysiological 
changes of some cognitive features seen in patients with 
chromosome 22q11.2 deletion syndrome. For example, a 
small vermis is seen in such patients and in those with 
autistic spectrum disorder.122 The posterior vermis seems 
to control social drive, and this anomaly might explain the 
social awkwardness in some patients with the chromosome 
22q11.2 deletion syndrome.

The behavioural aspects of chromosome 22q11.2 deletion 
include attention defi cit hyperactivity disorder, poor social 
interaction skills, impulsivity, and bland aff ects.123–126 Bipolar 
disorder, autistic spectrum disorder, and schizophrenia or 
schizoaff ective disorder are reported in 10–30% of 
teenagers and adults. Psychiatric disorders are common in 
all patients with developmental delay; however, the 
association is stronger in patients with chromosome 
22q11.2 deletion. Schizophrenia is associated specifi cally 
with aberrant brain structure.127,128 Insight into the 
mechanism underlying the association of psychiatric 
diseases and chromosome 22q11.2 deletions might come 
from murine models. Mice carrying the Cre–LoxP deletion 
showed abnormal prepulse inhibition.129 The prepulse 
inhibition test measures the startle response to various 
stimuli. Patients with schizophrenia have impaired pre-
pulse inhibition as do mice with the deletion. This result 
proved to be due to haplosuffi  ciency for TBX1 and guanine 
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nucleotide binding protein (G protein), β poly peptide 1-like 
(GNB1L).130 Up to now, patients with behav ioural diffi  culties 
and frank psychiatric disturbances have been treated with 
conventional modalities. Whether this fi nding will enable 
tailored inventions for patients with the chromo some 
22q11.2 deletion syndrome remains to be seen.
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